Phil

From cctbx_xfel
Revision as of 22:22, 3 October 2013 by Aaron (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

As described in the overview, phil files contain parameters used during hitfinding, indexing and integration. This tutorial uses two phil files during the indexing and integration step: Ls04-lysozyme.phil and metrology-7.1.phil. The former specifies parameters specific to the processing run, while the latter specifies whole-pixel and sub-pixel metrology corrections applied to the 64 CSPAD sensor tiles.

Hitfinding/indexing/integration phil file

For the tutorial, Ls04-lysozyme.phil, stored in the /reg/d/ffb/cxi/temp/cctbx/tutorials/indexing directory but copied to your ~/myrelease directory during use, contains configuration settings we worked out that best process this data. The file will look like this:

# -*- mode: Conf -*-

include file metrology-7.1.phil

# From looking at 35 images integrated with detz_offset = 581 and
# without target_cell set.
target_cell = 38 79 79 90 90 90
known_setting = 9

# Try 2: change resolution from 1.8 to 3.0 �~E.
# Try 2: change resolution from 3.0 to 2.0 �~E.
distl_highres_limit = 2.0
force_method2_resolution_limit = 2.0

mosaicity_limit = 1

# Set to True to pick up second lattice, if present.
#outlier_detection_switch = True

# TEST
distl_minimum_number_spots_for_indexing = 20

distl {
  res.outer = 2.0
  minimum_signal_height = 5
  #minimum_spot_height = 10
  minimum_spot_height = 5
  minimum_spot_area = 1
  spot_area_maximum_factor = 20
  compactness_filter = False
  #method2_cutoff_percentage = 5
  method2_cutoff_percentage = 2.5

  # Avoids intensity filter.
  #peak_intensity_maximum_factor = 10000
  peak_intensity_maximum_factor = 100
}

indexing {
  # Set to True to generate correction vectors.
  verbose_cv = True
}

integration {
  background_factor = 2

  #detector_gain = 7.5
  detector_gain = 1.0

  #model = use_case_3_simulated_annealing_7
  model = user_supplied

  signal_penetration = 0.5
  #spot_shape_verbose = True
  spotfinder_subset = spots_non-ice
}

Several lines of parameters are given, then a few parameter blocks are specified, enclosed in {} brackets. The parameters in detail:

  • target_cell: known unit cell for this sample. In the form a, b, c, alpha, beta, gamma
  • known_setting: < Nick will add a description and how to derive this soon >
  • distl_highres_limit and force_method2_resolution_limit: only process to this resolution limit.
  • mosaicity_limit: maximum moisicity before a frame is rejected
  • distl_minimum_number_spots_for_indexing: indexing will not proceed unless there are at least this many good spots found on the image
  • Subcategory distl: parameters specific to spot finding
    • res.outer: resolution limit for spotfinder
    • minimum_signal_height: in units of background noise sigma, how much signal is needed for a spot
    • minimum_spot_height: minimum height for a pixel to be considered a maximum (after it's determined to be signal)
    • minimum_spot_area: minimum area in pixels for each spot
    • spot_area_maximum_factor: in multiples of minimum spot area, how large spots are allowed to be
    • compactness_filter: < Nick to add a description here >
    • method2_cutoff_percentage: < Nick to add a description here >
    • peak_intensity_maximum_factor: a peak intensity filter
  • Subcategory indexing:
    • verbose_cv: if true, correction vectors are generated < more detail here >
  • Subcategory: integration
    • background_factor:
    • detector_gain: ADU units per photon
    • model: labelit has several integration models, and allows users to provide their own. The model listed here is custom for these xfel applications
    • signal_penetration: thickness of the CSPAD sensors.
    • spotfinder_subset: which spots found by spotfinder to use. Choose from: