Difference between revisions of "Data Processing at SACLA"

From cctbx_xfel
Jump to: navigation, search
(Obtaining metadata like detector position)
Line 69: Line 69:
  
 
Phil file must have good parameters for data processing.  Take one from previous users.
 
Phil file must have good parameters for data processing.  Take one from previous users.
 +
 +
== Converting SACLA pipeline geometry file to DIALS ==
 +
libtbx.python modules/cctbx_project/xfel/sacla/mpccd_geom2json.py <SACLA_GEOM> distance=<DETECTOR DISTANCE>
 +
 +
== Modifications to detector distance ==
 +
Distance can be specified by modifying line 55 of
 +
/home/jkern/xfel_env/conda_install/modules/cctbx_project/dxtbx/format/FormatHDF5SaclaMPCCD.py
 +
 +
`self.distance = 100.0`

Revision as of 01:41, 18 November 2017

Obtaining metadata like detector position

1) AgBeh (silver behenate). Determine detector distance and beam center --> update SACLA-provided *.geom file (CrystFEL format) --> run sacla geom to json on *.geom to get equivalent for DIALS processing

2) h5_mpi_submit --> launches dials.stills_process with process.phil, and queueing options.

Specify what runs (integers) /work/jkern/2017B8085/xrd/r234567-0/*.h5

2.5) Data visualization.

3) metrology refinement dials.combine_experiments reference_from_experiment.detector=0.

Takes 1000 images, puts into 1 file. Output: combined_experiments.json + combined_reflections.pickle

1 Experiment = crystal + detector + beam

Must cherry pick data if there is scare data out to the corners. (but not covered here. but: largest pickle files are highly diffracting).

dials.refine combined* hierarchy_level=[0|1] # Use 0 first (refine detector as a block) then 1(refine each panel) To keep detector flat: refinement.parameterisation.detector.fix_list=Tau2,Tau3

Level 0: refine dist, shift1, shift2. Fix: tau

Level 1: refine shift1, shift2, tau1 Fix: dist, tau2, tau3

Evaluation--how do you know if it made a difference?

dev.cctbx.xfel.detector_residuals json pickle # also specify hierarchy_level=1 residuals.plot_max=0.3

program -c -e 10 -a 2# gets all config parameters for a program at expert level 10, giving all help strings.

4) redo integration with reference geometry:

reference_geometry=refined_experiments.json

5) merge

take merging script from LQ79. Take it verbatim. Use cxi.merge

  1. !/bin/bash
  2. PBS -q [smp|serial]

smp: lots of memory up to 44 pros serial: up to 14 pros, 1 node b13-occupancy: reserved for you

DIALS workflow

dials.import file.h5 (the h5 will have 1000's of images in it) --> datablock.json. Has experimental models as abstracted from image header

dials.find_spots datablock.json --> strong.pickle

dials.index strong.pickle datablock.json --> indexed.pickle experiments.json

dials.refine --> refined_experiments.json refined_reflections.pickle

dials.integrate

Aggregate processing at XFELS

Need to submit a single job for each *.h5 file (manually, or write a script) Instead of running the individual steps: dials.stills_process *.h5 process.phil

Phil file must have good parameters for data processing. Take one from previous users.

Converting SACLA pipeline geometry file to DIALS

libtbx.python modules/cctbx_project/xfel/sacla/mpccd_geom2json.py <SACLA_GEOM> distance=<DETECTOR DISTANCE>

Modifications to detector distance

Distance can be specified by modifying line 55 of /home/jkern/xfel_env/conda_install/modules/cctbx_project/dxtbx/format/FormatHDF5SaclaMPCCD.py

`self.distance = 100.0`