Phil

From cctbx_xfel
Revision as of 22:22, 3 October 2013 by Aaron (talk | contribs) (Created page with "As described in the overview, ''phil'' files contain parameters used during hitfinding, indexing and integration. This tutorial uses two ''phil'' files during the indexin...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

As described in the overview, phil files contain parameters used during hitfinding, indexing and integration. This tutorial uses two phil files during the indexing and integration step: Ls04-lysozyme.phil and metrology-7.1.phil. The former specifies parameters specific to the processing run, while the latter specifies whole-pixel and sub-pixel metrology corrections applied to the 64 CSPAD sensor tiles.

Hitfinding/indexing/integration phil file

For the tutorial, Ls04-lysozyme.phil, stored in the /reg/d/ffb/cxi/temp/cctbx/tutorials/indexing directory but copied to your ~/myrelease directory during use, contains configuration settings we worked out that best process this data. The file will look like this:

# -*- mode: Conf -*-

include file metrology-7.1.phil

# From looking at 35 images integrated with detz_offset = 581 and
# without target_cell set.
target_cell = 38 79 79 90 90 90
known_setting = 9

# Try 2: change resolution from 1.8 to 3.0 �~E.
# Try 2: change resolution from 3.0 to 2.0 �~E.
distl_highres_limit = 2.0
force_method2_resolution_limit = 2.0

mosaicity_limit = 1

# Set to True to pick up second lattice, if present.
#outlier_detection_switch = True

# TEST
distl_minimum_number_spots_for_indexing = 20

distl {
  res.outer = 2.0
  minimum_signal_height = 5
  #minimum_spot_height = 10
  minimum_spot_height = 5
  minimum_spot_area = 1
  spot_area_maximum_factor = 20
  compactness_filter = False
  #method2_cutoff_percentage = 5
  method2_cutoff_percentage = 2.5

  # Avoids intensity filter.
  #peak_intensity_maximum_factor = 10000
  peak_intensity_maximum_factor = 100
}

indexing {
  # Set to True to generate correction vectors.
  verbose_cv = True
}

integration {
  background_factor = 2

  #detector_gain = 7.5
  detector_gain = 1.0

  #model = use_case_3_simulated_annealing_7
  model = user_supplied

  signal_penetration = 0.5
  #spot_shape_verbose = True
  spotfinder_subset = spots_non-ice
}

Several lines of parameters are given, then a few parameter blocks are specified, enclosed in {} brackets. The parameters in detail:

  • target_cell: known unit cell for this sample. In the form a, b, c, alpha, beta, gamma
  • known_setting: < Nick will add a description and how to derive this soon >
  • distl_highres_limit and force_method2_resolution_limit: only process to this resolution limit.
  • mosaicity_limit: maximum moisicity before a frame is rejected
  • distl_minimum_number_spots_for_indexing: indexing will not proceed unless there are at least this many good spots found on the image
  • Subcategory distl: parameters specific to spot finding
    • res.outer: resolution limit for spotfinder
    • minimum_signal_height: in units of background noise sigma, how much signal is needed for a spot
    • minimum_spot_height: minimum height for a pixel to be considered a maximum (after it's determined to be signal)
    • minimum_spot_area: minimum area in pixels for each spot
    • spot_area_maximum_factor: in multiples of minimum spot area, how large spots are allowed to be
    • compactness_filter: < Nick to add a description here >
    • method2_cutoff_percentage: < Nick to add a description here >
    • peak_intensity_maximum_factor: a peak intensity filter
  • Subcategory indexing:
    • verbose_cv: if true, correction vectors are generated < more detail here >
  • Subcategory: integration
    • background_factor:
    • detector_gain: ADU units per photon
    • model: labelit has several integration models, and allows users to provide their own. The model listed here is custom for these xfel applications
    • signal_penetration: thickness of the CSPAD sensors.
    • spotfinder_subset: which spots found by spotfinder to use. Choose from: